
AD-A2 7 8 798

NAVAL POSTGRADUATE SCHOOL
Monterey, California

94-13450

OBJECT-ORIENTED SIMULATION PICTURES

(OOSPICs) FOR DESIGN AND TESTING

Michael P. Bailey

February 1994

Approved for public release; distribution is unlimited.

Prepared for:
Naval Postgraduate School
Monterey, CA 93943 IDTIC Q:- ,:•

-916

Best
Available

Copy

NAVAL POSTGRADUATE SCHOOL
MONTEREY, CA 93943-5000

Rear Admiral T. A. Mercer Harrison Shull
Superintendent Provost

* -s report was prepared for the Naval Postgraduate School.

Reprc~uction of all or part of this report is authorized.

This report was prepared by:

WC 4t*-BALEY
Professor of Operations Research

Reviewed by: Released by:

PETER PURDUE PAUL J. MRTO
Professor and Chairman Dean of thsearch
Department of Operations Research

REPORT DOCUMENTATION PAGE I Fore, Nrov.d

PubIc iaontig budenfob hiscokanc~wwo of loena s arurnd t average 1 four per maporie nav ove Vie nu rowtim vuiucione. aewdwig exaigfr dam owe
. and mmnanng ft dam needed, and ompievig and eoeeg ft .olecoon of . ,Sen WTV U regW,• g burden ad.nimeor any otw apa of

con of infomaon. rcjng suggese nfr redudng ta burden Her d ID Serwus. - racua& b fmm for Ifomian ins end Rein. 215 Je___ =
Davis Higrway, Sui* 1204. Aipngi. VA 22l024302. and m tie Offlo of a rn d Budogeo. Papemro Reducon Proled (0704-0188). Waingm, DC 2M

1. AGENCY USE ONLY (Le#v bea;k) 2. REPORT LATE 3. REPORT TYPE AND DATES COVERED

February 1994 Technical

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Object-Oriented Simulation Pictures (OOSPics) for Design and
Testing

6. AUTHOR(S)

Michael P. Bailey

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Naval Postgraduate School NPS-OR-94-000
Monterey, CA 93943

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

N/A

11. SUPPLEMENTARY NOTES

12m. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

A diagramming technique called Object-Oriented Simulation Pictures (OOSPic) is
presented. Using this technique, a simulation designer can show the relationships and
interactions between object types. OOSPics also promote extensive bottom-up object testing.
Finally, if a complete OOSPic is constructed before coding begins, a reliable model can be
constructed directly.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Object-oriented simulation, Software design 14
16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified UL
NSN 7540-01-2W0-5500 Standard Form 298 (Rev. 2-89)

proscriod by ANSI Stcl. 239-16

OBJECT-ORIENTED SIMULATION PICTURES
(OOSPICs)

FOR DESIGN AND TESTING

Michael Bailey

Naval Postgraduate School
Monterey, California U. S. A.
mike~uwhiz.or.nps.navy.mil

ABSTRACT derstand the basics of object-oriented simulation, see
Cox (Cox 1989), or Taylor (Taylor 1990), for an in-

A diagramming technique called Object-Oriented troduction.
Simulation Pictures (OOSPic) is presented. Using Object-Oriented simulation is not new, and has en-
this technique, a simulation designer can show the joyed (endured?) a close relationship to other tech-
relationships and interactions between object types. nologies labeled Artificial Intelligence. Systems
OOSPics also promote extensive bottom-up object such as Zeigler's (Zeigler 1990) are artifacts of this
testing. Finally, if a complete OOSPic is constructed relationship, and treat the object-oriented simulation
before coding begins, a reliable model can be con- designer as a well-trained, state-of-the-art computer
structed directly. scientist. Most simulationists come from the fields

of operations research, manufacturing, or engineer-
Iing, and could use something simpler than Zeigler's

1INTRODUCTION DEVS-Scheme.

In this work, we present a simple diagramming
The pursuit of the perfect diagramming technique technique which Henry Ford would have been proud
is a venerable occupation among computer scien- of:
tists. Among those who specialize in computer sim-
ulations, works like Fishman (Fishman 1978) show "The best ideas are simple.'
how flowcharts can be used to design and commu-
nicate discrete event models. Languages like SLAM Henry Ford
(Pritsker et at 1989) or SIGMA (Schruben 1992) were
actually designed so that the diagram drawn is the OOSPics are at home on chalkboards, backs of en-
computer simulation. This worked extremely well for velopes, or in elegant documentation of a large, ex-
languages which concentrated on networks of queues. pensive simulation. The only tools required to pro-

Recently, object-oriented simulation methods have duce them are pen, paper, and imagination. While
become popular, and MODSIM II (MODSIM 1994) we do have aspirations of automating the OOSPic
has become a tool used by many simulation builders. construction process and adding code generation and
The product ObjectManager (Object Manager 1994) testing, the OOSPic is a natural language for simula-
facilitates model construction in MODSIM, but does tionists.
not focus on project design. What the designer needs We have trained approximately two hundred (200)
is an easy, standardized way to show relationships be- students in object-oriented design using OOSPics,
tween objects, as well as the impacts one object has and have refined and simplified the technique with
on another. This work will present a tool useful for their help. Diagrams in this article are produced on
designing object-oriented simulations in any object- a computer for publication, but OOSPics are usually
oriented simulation language which implements pro- drawn by hand.
cess interaction timing. Simula (Birtwistle et al
1973), sim++ (Baezner et aL 1990), SIMSCRIPT 2 WHY AN OOSPic
(Russell 1983), and Maisie (Bagrodia 1991), all fit
this paradigm. We will use MODSIM structures and When looking at object-oriented model source
terminology to facilitate exposition. The reader need code, one cannot help but feel as if there are
not have a background in MODSIM, but must un- lots of semi-independent entities which relate to

1

each other in mysterious ways. The Definition
Module/Implementation Module breakdown used in Te

MODSIM is beautiful for exposing the workings of a 'bjft 1p. N-m
single object, but there is very little to help expose Objmwt FWeS
relationships between object types and interactions AM *- 1zm4oo

between objects. Clearly the design process mostly TEL. aWnmor
involves these relationships, so we need a method for
describing them. We call this method OOSPic, short
for Object-Oriented Simulation Pictures. Figure 1: An Object Box

These diagrams facilitate

"* COMMUNICATING REQUIREMENTS; may be times when an object box is used to identify
"• DESIGNING MODELS; a single ASK METHOD of the object. In this case,we simply omit the other lists. However, we should

"* TESTING MODELS; keep the separating bars in the box so that positional
relationships are maintained.

"* DOCUMENTING MODELS;

"* LEARNING ABOUT OOS. 2.1 Motivating Example - Project 1 of Intro-
duction to System Simulation: Remotely

One complete OOSPic is composed of three differ- Controlled Vehicle
ent kinds of diagrams: The following is a description of a project undertaken

1. Object Lay-Out: shows the relationships be- in an introductory system simulation coursc which
tween object type definitions, as well as relaying uses MODS5M. We will use this project to motivate
information about how the objects will act. our discussion of the OOSPic. The project assign-

ment is stated as follows:
2. Transition/Action Diagram: shows the flow of a Design an object which represents a vehicle, per-

single method, and emphasizes the external ac- son, animal, storm system, etc., which is called Di-
tions of the object. rectedMovingObj. This object must be controlled by

3. System Drop-Through: simple flowchart show- inputting directions (speed, waypoints) from the con-
ing how the simulation is executed. sole. All of the user interactions and object actions

should be recorded in an output file, along with en-
The object lay-out shows which objects inherit tries and exits from all methods and procedures. The

properties from other objects, set memberships, and following are the steps involved:
different types of ownership. Before we can discuss
these relationships, we need to establish that a sin- 1. Design an object called MovingObj which main-
gle object in an OOSPic is shown as a tagged, four- tains its own position and velocity, and which
layered box, shown in Figure 1. takes directions. This object should start at (0,0)

and have an initial velocity of 0. The definition
1. The top layer states the object's type name. module for MovingObj is shown in Figure 2.

2. The second layer lists all of the fields of the ob- 2. Inherit the MovingObj into DirectedMovingObj,
ject. which is a MovingObj which gets directions from

3. The third layer lists all of the ASK (non-time- the user console by asking questions. The object
consuming) METHODS of the object. should OUTPUT its position and the current

simulation time at the end of each move. Hint:
4. The fourth layer lists all of the TELL (time- This object should WAIT FOR itself to MoveTo

consuming) METHODS of the object. in the TELL METHOD DoGuidedTour. Figure
3 shows the definition for DirectedMovingObj.

The tag gives the object another name, called its

local name. We'll see the importance of tagging when 3. In a PROCEDURE create a variable number
we discuss object ownership, of objects of type DirectedMovingObj and place

It's important to state that we are not suggesting them in an object of type QueueObj. TELL each
that all of this information be listed every time the to DoGuidedTour.
object box is used in the OCSPic. For example, there

2

P~aani
Vek"-ity

ChnpeeWbdty

DEFINITION MODULE Moving; mavo
{

Mike Bailey

TYPE €•uWv4WCUy
XYRecType - RECORD

I : REAL;
Y : REAL; Figure 4: Object Boxes for the MovingObj, Full and

END RECORD; Abbreviated.

MovingObj - OBJECT
Position XYRecType;
Velocity : REAL;
ASK METHOD ObjInit;
TELL METHOD MoveTo(IN XY XYRecType); k
ASK METHOD CbangeVelocity(IN Vol : REAL);

END OBJECT;
END MODULE.

Figure 2: Definition module for the MovingObj, Figure 5: Arrow Symbols used in an Object Lay-Out.

found in file DMoving.mod FRom left to right, they are inheritance, permanent
ownership, temporary ownership, and membership.

Thus, suppose that we had an object MovingObj
which had an object box as shown in Figure 4. If we
wanted to use an object box which just highlighted
the ASK METIIOD Change Velocity, we could use
the abbreviated box shown.

DEFINITION MODULE Direct; 3 OBJECT LAY-OUT
{

Mike Bailey An object lay-out should tell us everything required
} to define an object. It also includes several aspects
FROM Moving IMPORT MovingObj; which will help the designer relay his intentions about

how an object may be used.
TYPE An object lay-out contains an object box for every
DirectedMovingObj - OBJECT(MovingObj) object in the model. Special arrows connect the boxes

TELL METHiOD DoGuidedTour; to show
{DoGutdedTour manages the movement of
the object by interacting with the * inheritance;

user to get directions.1 e permanent ownership.
END OBJECT;

o temporary ownership;

Figure 3: Definition module for DirectedMovingObj,- - 9 membership;
found In file DDirectanod Our DirectedMovingObJ shows its Inheritance re-

lationship to MovingObj in Figure 6. In addition, It
shows the membership relationship as each Directed-
MovingObj is a member of the QueueOfMovers.

3 04 .i

Doua u.drour verya

Mow~
-~~ Vi7 an.

P-ann T n~ns~bJ

I -M

Figure 6: Object Lay-Out for the MovingObj Project. uMad_ _ _

Some interesting notes about the object lay-out of
DirectedMuvingObj:

I. This is the lay-out of a subset of the key corn-
ponents in the simulation model - all of these
diagrams are useful in building and document-
Ing pieces of models.

2. If DirectedMovingObj included an OVERRIDE Figure 7: Object Lay-Out Showing Permanent and

of a METHOD of MovingObj, we would see this Temporary Ownership. The Engine is a permanent
by observing the same METIHOD name in both component of the VehicleObj, but the Cargo may be
MovingObj and DirectedMovingObj. swapped in and out several times during the simula-

tion.

3. QueueOfMovers is the local name of the
QueueObj object which contains DirectedMovin- closely related to the well-known flowcharts first used
gObj instances. The object box tag tells us this. in the 1950's, but has been tailored to object-oriented

4. The QueueObj object box is empty, no details simulation use.
are required. QueueObj is a standard MODSIM
object type and is well documented in (MODSIM 4.1 Transitions
1994). In each METHOD of an object, the object may be

To see the ownership features of an object lay-out, thought of as rolling through a set of states. These
let's suppose that we have an object called a Ve- states are of two distinct types:
hicleObj, which inherits all of the properties of the
MovingObj, and which has a permanent Engine and 1. PERSISTENT STATES: The object is sus-

which may carry Cargo. The object lay-out for the pended and simulation time is elapsing.
engine is shown in Figure 7. 2. TRANSIENT STATES: The object is doing one

Note the two different kinds of arrow relating the or both of the following:
Engine to the VehlcleObj and the Cargo to the Ve-
hicleObj. Ftoom this diagram we can expect many (a) developing some important data product;
different LoadObj's to be attached to a VehicleObj, (b) interacting with other objects.
however the VehicleObj has a single permanent En-
gine during the simulation. Also notice the use of In these cases, the simulation clock is frozen while
the tags. This identifies the PowerPlantObj with the the object is in the transient state. See Figure 8. We
Engine field of the VehicleObj. The VehicleObj de- use boxes to Indicate states, thick walls for persistent
signer may even decline to list Engine as a field of states and thin walls for transient states.
VehicleObj because of the tag on the PowerPlantObj. The METHOD flows from one state to another ac-

cording to simple arrows. In order to show logical
4 TRANSITION/ACTION DIAGRAMS flow, we need two relics of the traditional flow chart,

the decision and the loop. Decisions are indicated
Each important METHOD of each object should have by diamonds, while loops flow with the arrows. See
its own transition/action diagram. This diagram is Figure 9.

4

These symbols are all that we need to describe
the transitions that the object takes on. The TELL
METHOD DoGuidedTour of the DirectedMovingObj
has the transitions as shown in Figure 10. Note the
use of the -ing suffix in all of the state descriptions.LThis encuuragto us to antthroponiorphize the object,

and to account for all of its actions.
When designing an object METHOD, the designer

Figure 8: State Boxes for Transient (thin walls) and can simply scribble out the states as they come to his

Persistent (thick walls) States. mind. However, when preparing more formal tran-
sition/action diagrams, the separation of states can
be important. We suggest that the separation be as
follows:

I. PERSISTENT STATES: one state identified per
WAIT in the implementation code.

-i 2. TRANSIENT STATES: one state identified per
important data product, and one state per im-

\ / portant action.

4.2 Actions

Actions are all those things which an object does that
involve other METHODS or other objects. These ac-
tions include:

1. starting other METHODS;

Figure 9: Decisions and Loops. 2. querying other object's fields or invoking ASK

METHODS which return values;

3. starting an INHERITED method;

4. delivering data to another object;

5. WAITing for another object to finish a TELL
fXI METHOD.

The sequence in Figure 11 shows the symbols for
each of these actions.

Y
1. Starting a TELL METHOD: a simple arrow from

=A==d r a transient state box to an object box with its
DVekid TELL METHOD listed.

2. Getting data: looping arrow from a transient
state box to an object box, the information pro-
vided is shown in the object box by listing fields
"or ASK METHODS which return values.I - IW4 Upd-.UPUg 3. Delivering data: straight arrow from transient
state box to an object box. The object box shows
the ASK METHOD which receives the data.

Figure 10: Thansition/Action Diagram for DoGuid- 4. Inherited METHOD: thick arrow pointing Into
edTour. Only the transitions are shown. a persistent or transient state box from an ob-

ject box. The object box shows the METHOD
inherited, the type of the state box depends on

5

ASUhnd 10r WA~t IF 40b1

V~mIoc toy

L1Z!~~~~~I Figur~ e 12: Fllo 'lrAnio/A inDagmfo

*M10qUo

Tugwhether tihe inherited METIIOD is an ASK or

L1s• TELL.

IE T

5. WAIT FOR: looping arrow from persistent state
Figure 11: Actions. Fr-om top to bottom, they are box to an object box. The object box lists the
start a TELL METIHOD; Cet data from a field or by TELL METHIOD which is WAITed FOR.
invoking an ASK METHOD; Deliver data to another
object; Start an inherited METHIOD; WAIT FOR a
TELL METIhOD The full transition/action diagram for DoGuided-

Tour is shown in Figure 12. Note that the inherited
METHODs involved are labeled a actions taken with
SELF a a MovingObi. The SELF label always tips
off the usse of an inherited METiOD. Hence the Di-
rectedMovingObj will deliver data to Its own ASKI
METHtOD ChangeVelocity, It will WAf T FOR itself
to execute the TELL METHOD MoveTo, and It will
change its own Poition field.

6

object Type
Detemb~~lNmber -.

0 N ObýEey hapailaait METNOC

METHOD
every inampodea 081a Product
every 5nb'Lh
E•ery END WArT

"Dl ý Add Figure 14: Nested Testing.

manufacture. We should do the same in our software
Mov design. Planning tests must be done during the de-

_otrected 0 sign phase of the project. We start from the inside

7 j tand work our way out.

-dI DOG•.eda, 6.1 METHOD Tests

Action/transition diagrams show the decomposition

Figure 13: System Drop-Through. of METIIODS into states where important data prod-
ucts are developed, decisions are made, and simu-
lation time elapses. To test the performance of a

5 SYSTEM DROP-THROUGH METIIOD, we simply need to verify that the devel-
oped data products are correct, the decisions made

Simulation models run inside simulation executives, are the right ones, and that the timing of the WAITs
This executive subprogram is not a METIHOD of an is correct.
object, it's simply a PROCEDURE which initializes IHence, transition out of a state is an obvious point
the system, does replications, collects data, and per- for checking the state's results. These results are:
forms output analysis procedures. Often a simulation
is reused to do several different analyses by changing 9 values of data developed or attained;
only this process.

The diagram we use to design and communicate * results of decisions;
the simulation executive is called the system drop- * the simulation clock time after a persistent state.
through. It consists of a single traniition/action di-
agrain with no persistent states. It may be deconi- Each METHOD should be exercised in every
posed into modular procedures, but it always has a branch and for every important, foreseeable situation.
linear flow. Below we see the simple system drop-
through for the project. 6.2 Object Tests

Looking at an object lay-out, we find everything in an
6 TESTING object that should be tested - these are the METII-

ODs of the object. The suggested methodology is
Testing any computer program relies mostly on com- to construct a testing MAIN MODULE for each ob-
mon sense and careful work. Testing an objct- jet type. This proces should start with the ubjects
oriented simulation is often a difficult concept be- which are base types, those that do not inherit any
cause of the object's autonomy and flexibility. Ilow- other object's properties, and which are not owned
ever, these were the same reasons we used to justify by another object. One Instance of the object should
constructing the OOSPic. As it turns out, our pic- be created. The object's METHODs should all be ex-
tures facilitate testing our objects and our system. ercised and all of the output should be collected in a
We should pursue testing in the nested frameworks file. This file's contents should be checked for correct
shown in Figure 14. responses from the object, then should be renamed

Manufacturing technology of durable goods like au- and kept.
tomobiles was revolutionized by emphasizing testa- Hlence, at the end of this process, we have files:
bility in the design of the product. A modern car
designer includes test equipment in the car's design, 1. "M" + object name + ".mod' - the MAIN used
and spt.•clie the testing the car will undhrgo duritig to test the object.

7

2. object name + .test" (or ".tst") - output from
execution of the test program.

These test programs and their results should be
archived by the developer. When the object is
changed or inherited, the test program can be recoln-
piled and rerun to check for consistency with older
versions.

6.3 System Tests r| "'-'-- ------

Finally, the system drop-through diagram can be used
to generate tesns of the entire model. Every state in U
the system drop-through is & breakpoint where cor- "1
rect performance can be tested. Let's look at the Ch - WM-

OOSPic for the Mover project. We wish to test
the METHOD, OBJECTS, and SYSTEM for this --------- -vwIs
project. " ------ -:

Testing the system with the DlrectedMovingObjSa
objects can be partially done as follows. Inside the
TELL METHOD DoCuidedTour, the foUllowing infor- &b0~j

mation should be collected as indicate I iu the traus-
sitiosa/action diagram:

1. the Name assigned to the object;

2. the destination and velocity the user requests; Up"Ud ftsom

3. the simulation clock time at the end of the
WAIT;

4. the object's new position.

Figure 15 shows the transition/action diagram for
DoCuidedTour annotated for testing. When planning
testing using a hand-drawn OOSPic, we suggest that
the designer photocopy the transition/action diagram
and use colored pens to make the testing annotations. Figure 15: Testing-Annotated Transition/Action Di-

Testing the DirectedMovingObj should not be un- agram.

dertaken until the MovingObj is tested. Once that
is accomplished and the files MMovingObj.mod and
MovingObj.tst are safely tucked away, we can cre-
ate MDirectedMovingObj.mod. The contents of this MAIN MODULE Directed~ovingObj;

module can be seen in Figure 16. FROM Direct IMPORT DirectMovingObj;

7 OOSPlcs for ADVANCED MODSIM Mover: DirectedMovinglbJ ;

In this final section, we address some more advanced
MODSIM capabilities which can also be diagrammed NE(Nover);
using OOSPica. These are: TELL Mover TO DoGu)dodTour;

1. Interrupts of TELL METHODS; END MODULE.

2. HiggerObjs: used to synchronize object activi-
ties by using an ASK METHOD Fire; Figure 16: Definition module for the MovingObj,

found in file DMovingmod
3. ResourceObje: manage a pool of resources.

8

WAitnV

I WAIT FOB Tr4L bJ

, N Figure 18: Action Diagram for using a TriggerObj.

Y

WAiT F• L I4muauabjj

L e-d• A.• ,Figure 19: Action Diagram for using a ResourceObj.

Figure 17: Action Diagram for an Interrupt. reader knows something funny is going on because

the diagram shows a persistent state WAIT FORing

7.1 Interrupt an ASK METHOD.

Any persistent state is associated with a WAIT in
the MODSIM code, so the exit from the persCLteSt
state can be caused by the WAIT ending successfully, In this work, we have presented a way to design and
or by the WAIT being interrupted. The latter may document object-oriented simulation models using di-
be handled in the OOSPic transition/action diagrain agrams. We have focused on one particular OOS lan-
using a simple decision. guage, MODSIM, only so much as we have incorpo-

To show a METHOD causing an interruption of rated the essential capabilities and vernacular of this
another object's TELL METHOD, we need a new language. The diagramming paradigm, C)SPic, al-
action symbol, seen in Figure 17 as the arrow with lows us to communicate about the structure of ob-
the "X" on it. The TELL METHOD interrupted is jects and their interactions during simulation. It is
shown in the object box. foreseen that some tool similar to ObjectManager will

eventually incorporate and enhance this diagramming
T.2 TriggerObj technique.

A trigger object can impact another object by stop-
ping the flow of a TELL METHOD until the trig- REFERENCES
ger object executes its Fire Method. Hence, the ap-
propriate symbol is the WAIT FOR. Distinguishing Ba.zner, D., Q. Lo.ow, and B. Unger. 1990.

the WAIT FOR trigger from the generic WAIT FOR Sire++: The TV&raition to Distributed Simulation.

only requires a look at the object box, where an ASK Distributed Simulation, Vol. I2. San Diego: So-

METHOD Fire is shown. ciety of Computer Simulation. p. 211-218.
Bagrodia, R. 1991. Interative Design of Efficient Sim-

7.3 ResourcoObJ ulations using Maisie. Proexedings of the Winter
Simulation Conference, B. Nelson, D. Kelton,

WAITing for a resource is like WAITing for a trig- and 0. Clark, d&s. p.243-47.
ger, except that resource WAITing can be special- Bertwistle, C., O.-J. Dahl, B. Myhrhaug, and K.
ized using timed WAIT FORs, or prioritized WAIT Nygaard. 1973. SIMULA BEGIN. Phiadelphia:
FORb. In either case, simple annotation is all that is Auerbach.
required to show these. The object box must show the Booch, C. 1990. Object Oriented Design with
Give METHOD as the METHOD we WAIT FOR. In Applications. Redwood City, California. Ben-
the case of the 7riggerObj and the tesourc•Obj, the jamin/Cummings.

9

Cox, B. J. 1989. Object Oriented Programming:
An Evolutionary Approach. New York: Addison-
Wesley.

Fishman, George S. 1978. Principles of Discrete
Event Simulations. New York: Wiley & Sons.

MODSIM II Programming Language Reference
Manual, Version 1.9 1994. LaJolla, California
CACI.

Object Manger Refere-ce Manual. 1994. LaJolla,
California: CACI.

Pritsker, A. A., C. E. Sigal, and R. D. Hammesfahr.
1989. SLAM 11 Network Models for Decision
Support. Englewood Cliffs, New Jersey: Prentice-
Hall.

Russell, E. C. 1983. Building Simulation Models in
SIMSCRIPT 11.5. LaJolla, California: CACI.

Schruben, L. 1992. SIGMA: A Graphical Simula-
tion System. San Francisco: Scientific Press.

Taylor, D. A. 1990. Object-Oriented Technology:
A Manager's Guide. San Francisco: SERVIO.

Weiner, R. S. and L. J. Pinson. 1988. An Intro-
duction to Object-Oriented Programmming and
C++. New York: Addison-Wesley.

Zeigler, B. 1990. Object-Oriented Simulation
with Hierarchical. Modular Models: Intelligent
Agents and Endomorphic Systems. San Diego:
Academic Press.

10

INITIAL DISTRIBUTION LIST

1. Research Office (Code 08) .. 1
Naval Postgraduate School
Monterey, CA 93943-5000

2. Dudley Knox Ubrary (Code 52) .. 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. Defense Technical Information Center ... 2
Cameron Station
Alexandria, VA 22314

4. Department of Operations Research (Code OR) .. 1
Naval Postgraduate School
Monterey, CA 93943-5000

5. Prof. Michael P. Bailey (Code OR/Ba) .. 50
Naval Postgraduate School
Monterey, CA 93943-5000

11

